3.3.13 \(\int \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2 \, dx\) [213]

Optimal. Leaf size=192 \[ -\frac {1}{4} b^2 x \sqrt {d-c^2 d x^2}+\frac {b^2 \sqrt {d-c^2 d x^2} \text {ArcSin}(c x)}{4 c \sqrt {1-c^2 x^2}}-\frac {b c x^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{2 \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2+\frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^3}{6 b c \sqrt {1-c^2 x^2}} \]

[Out]

-1/4*b^2*x*(-c^2*d*x^2+d)^(1/2)+1/2*x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2+1/4*b^2*arcsin(c*x)*(-c^2*d*x^2
+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-1/2*b*c*x^2*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/6*(a+b*
arcsin(c*x))^3*(-c^2*d*x^2+d)^(1/2)/b/c/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 192, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {4741, 4737, 4723, 327, 222} \begin {gather*} \frac {\sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^3}{6 b c \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))^2-\frac {b c x^2 \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x))}{2 \sqrt {1-c^2 x^2}}+\frac {b^2 \text {ArcSin}(c x) \sqrt {d-c^2 d x^2}}{4 c \sqrt {1-c^2 x^2}}-\frac {1}{4} b^2 x \sqrt {d-c^2 d x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2,x]

[Out]

-1/4*(b^2*x*Sqrt[d - c^2*d*x^2]) + (b^2*Sqrt[d - c^2*d*x^2]*ArcSin[c*x])/(4*c*Sqrt[1 - c^2*x^2]) - (b*c*x^2*Sq
rt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(2*Sqrt[1 - c^2*x^2]) + (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/2
 + (Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^3)/(6*b*c*Sqrt[1 - c^2*x^2])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 4723

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Dist[b*c*(n/(d*(m + 1))), Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 -
 c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 4737

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]

Rule 4741

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*((
a + b*ArcSin[c*x])^n/2), x] + (Dist[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[(a + b*ArcSin[c*x])^n/S
qrt[1 - c^2*x^2], x], x] - Dist[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]], Int[x*(a + b*ArcSin[c*x])^(
n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2 \, dx &=\frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \int \frac {\left (a+b \sin ^{-1}(c x)\right )^2}{\sqrt {1-c^2 x^2}} \, dx}{2 \sqrt {1-c^2 x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int x \left (a+b \sin ^{-1}(c x)\right ) \, dx}{\sqrt {1-c^2 x^2}}\\ &=-\frac {b c x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt {1-c^2 x^2}}+\frac {\left (b^2 c^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {x^2}{\sqrt {1-c^2 x^2}} \, dx}{2 \sqrt {1-c^2 x^2}}\\ &=-\frac {1}{4} b^2 x \sqrt {d-c^2 d x^2}-\frac {b c x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt {1-c^2 x^2}}+\frac {\left (b^2 \sqrt {d-c^2 d x^2}\right ) \int \frac {1}{\sqrt {1-c^2 x^2}} \, dx}{4 \sqrt {1-c^2 x^2}}\\ &=-\frac {1}{4} b^2 x \sqrt {d-c^2 d x^2}+\frac {b^2 \sqrt {d-c^2 d x^2} \sin ^{-1}(c x)}{4 c \sqrt {1-c^2 x^2}}-\frac {b c x^2 \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{2 \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^3}{6 b c \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.14, size = 128, normalized size = 0.67 \begin {gather*} \frac {1}{6} \sqrt {d-c^2 d x^2} \left (3 x (a+b \text {ArcSin}(c x))^2+\frac {(a+b \text {ArcSin}(c x))^3}{b c \sqrt {1-c^2 x^2}}-\frac {3 b \left (c x \left (2 a c x+b \sqrt {1-c^2 x^2}\right )+b \left (-1+2 c^2 x^2\right ) \text {ArcSin}(c x)\right )}{2 c \sqrt {1-c^2 x^2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x])^2,x]

[Out]

(Sqrt[d - c^2*d*x^2]*(3*x*(a + b*ArcSin[c*x])^2 + (a + b*ArcSin[c*x])^3/(b*c*Sqrt[1 - c^2*x^2]) - (3*b*(c*x*(2
*a*c*x + b*Sqrt[1 - c^2*x^2]) + b*(-1 + 2*c^2*x^2)*ArcSin[c*x]))/(2*c*Sqrt[1 - c^2*x^2])))/6

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.14, size = 531, normalized size = 2.77

method result size
default \(\frac {x \sqrt {-c^{2} d \,x^{2}+d}\, a^{2}}{2}+\frac {a^{2} d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 \sqrt {c^{2} d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3}}{6 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (2 i \arcsin \left (c x \right )+2 \arcsin \left (c x \right )^{2}-1\right )}{16 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (-2 i \arcsin \left (c x \right )+2 \arcsin \left (c x \right )^{2}-1\right )}{16 c \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{4 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (i+2 \arcsin \left (c x \right )\right )}{16 c \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (-i+2 \arcsin \left (c x \right )\right )}{16 c \left (c^{2} x^{2}-1\right )}\right )\) \(531\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x,method=_RETURNVERBOSE)

[Out]

1/2*x*(-c^2*d*x^2+d)^(1/2)*a^2+1/2*a^2*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b^2*(-1/6*
(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/(c^2*x^2-1)*arcsin(c*x)^3+1/16*(-d*(c^2*x^2-1))^(1/2)*(-2*I*(-c^2*
x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3+I*(-c^2*x^2+1)^(1/2)-2*c*x)*(2*I*arcsin(c*x)+2*arcsin(c*x)^2-1)/c/(c^2*x^2-1)+1
/16*(-d*(c^2*x^2-1))^(1/2)*(2*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3-I*(-c^2*x^2+1)^(1/2)-2*c*x)*(-2*I*arcsin(
c*x)+2*arcsin(c*x)^2-1)/c/(c^2*x^2-1))+2*a*b*(-1/4*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/(c^2*x^2-1)*arc
sin(c*x)^2+1/16*(-d*(c^2*x^2-1))^(1/2)*(-2*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3+I*(-c^2*x^2+1)^(1/2)-2*c*x)*
(I+2*arcsin(c*x))/c/(c^2*x^2-1)+1/16*(-d*(c^2*x^2-1))^(1/2)*(2*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3-I*(-c^2*
x^2+1)^(1/2)-2*c*x)*(-I+2*arcsin(c*x))/c/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="maxima")

[Out]

1/2*(sqrt(-c^2*d*x^2 + d)*x + sqrt(d)*arcsin(c*x)/c)*a^2 + sqrt(d)*integrate((b^2*arctan2(c*x, sqrt(c*x + 1)*s
qrt(-c*x + 1))^2 + 2*a*b*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*sqrt(c*x + 1)*sqrt(-c*x + 1), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x))**2,x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x))**2, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2\,\sqrt {d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))^2*(d - c^2*d*x^2)^(1/2),x)

[Out]

int((a + b*asin(c*x))^2*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________